
入門 ５次方程式のガロア群 

 

                 

（仏 Evariste Galois 1811～1832） 

 

４次方程式までは、四則演算と累乗根（ベキ根）をとることで一般式の 

 解の公式を作れるが 5 次以上の方程式ではそれができないことを今で 

 いう群や体の概念を用いて、彼 Galois（ガロア）が示した。 

 

 

 

 

 

 

 

 

 

 

 

 



 

    〖内容〗  

 

    〇はじめに         (p3～p6 ) 

 

        〇５次方程式のガロア群   (p7～p18 ) 

（例 1） 𝑥5 − 4𝑥 + 2 = 0   のガロア群𝐺  (≅ 𝑆5) 

(例 2)  𝑥5 − 2𝑝𝑥 + 𝑝 = 0 (𝑃 は素数)のガロア群 𝐺  (≅ 𝑆5) 

（例 3） 𝑥5 + 20𝑥 + 16 = 0  のガロア群 𝐺  (≅ 𝐴5) 

（例 4） 𝑥5 + 15𝑥 − 12 = 0 のガロア群 𝐺  (≅ 𝐹20) 

         ( 𝑥5 + 15𝑥 + 12 = 0 でも同じ) 

(例 5) 𝑥5 + 20𝑥 − 32 = 0 のガロア群 𝐺  (≅ 𝐷10) 

( 𝑥5 + 20𝑥 + 32 = 0 でも同じ) 

(例 6） 𝑥5 + 𝑥4 − 12𝑥3 − 21𝑥2 + 𝑥 + 5 = 0 のガロア群 𝐺  (≅ 𝐶5) 

 

         〇まとめ         (p19～p22)   

        〇引用、参考文献     (p23)  

 

５次方程式(𝑄上既約)のガロア群 

                   𝑆5           

                                             𝐹20                 

                  𝐴5                   

                                                   𝐷10             

                                       

                        𝐶5     

                     

 

 

 

 

 

 

 

 

 



はじめに。 

 

◎ ガロア群とは（3，4 次方程式のガロア群でも述べたが） 

 

有理数体 𝑄 上既約な( 𝑄 内の係数をもつ)  𝑓(𝑥) = 𝑥2 − 5 = 0  は、 

 𝑄 に√5 を添加した体 𝑄(√5 ) = {𝑎 + 𝑏√5 |𝑎 , 𝑏 ∈ 𝑄 } 上では、 

𝑓(𝑥) = (𝑥 − √5 )(𝑥 + √5 ) = 0 のように 

相異なる１次式の積に分解される。このとき、𝐿 = 𝑄(√5 ) を 

 𝑄 のガロア拡大といい、（下注 1） 

 𝐿  からそれ自身への自己同型写像、 

 𝑖 ∶ 𝑎 + 𝑏√5 → 𝑎 + 𝑏√5    (単に √5  → √5 と表す)   と  

         𝜎 ∶ 𝑎 + 𝑏√5  → 𝑎 − 𝑏√5    (単に √5  → −√5 と表す)  の 

集合 { 𝑖  , 𝜎 }  は、群をなす。 

これを方程式𝑓(𝑥) = 𝑥2 − 5 = 0 または、多項式 𝑓(𝑥) = 𝑥2 − 5 の 

ガロア群( 𝐺 )といい、𝐺 = 𝑄(𝐿/𝑄 ) で表す。 

この定義はガロア自身のものではないが、𝑓(𝑥) = 𝑥2 − 5 = 0 の解を 

         𝑥1 = √5   , 𝑥2 = −√5  としたとき、 

          𝑖 = (
𝑥1𝑥2
𝑥1𝑥2

) = (
12
12
)   , 𝜎 = (

𝑥1𝑥2
𝑥2𝑥1

) = (
12
21
) 

のように、解の置換群として捉えることができる。 

 

<<注 1>>『 詳しくは、 

体 𝐾 の拡大体 𝐿 がガロア拡大とは、分離拡大かつ正規拡大 

であることをいう 

有理数体 𝑄 に𝑥2 − 2 = 0 の解 1 つ√2 を加えた体𝑄(√2 ) は 

この上で 𝑥2 − 2 = (𝑥 + √2 )(𝑥 − √2 )となる（分離）ことや√2 と 

共役な(−√2 ) を含んでいる（正規）ので  𝑄のガロア拡大である。 

有理数体 𝑄 に𝑥3 − 2 = 0 の解 1 つ√2
3
 を加えた体 𝑄(√2

3
 )は 

この上で 𝑥3 − 2 = (𝑥 − √2
3
 )(𝑥2 + √2

3
 𝑥 + √4

3
) となるだけだし 

√2
3
 と共役な√2

3
 𝜔 や√2

3
 𝜔2  (𝜔 は 1 の虚数立方根)を含んでいない 

から 𝑄のガロア拡大でない。 

ちなみに、𝑥3 − 2 = (𝑥 − √2
3
 )(𝑥 − √2

3
 𝜔)(𝑥 − √2

3
 𝜔2) となる 

ので 𝑄(√2
3
  , 𝜔) は、  𝑄のガロア拡大である。 』 



     

    もう一例、ガロア群あげておく 

     𝑄 上既約な 𝑓(𝑥) = 𝑥4 + 1 = 0  は、 

             𝑄(√2 )上で、  𝑓(𝑥) = (𝑥2 + √2𝑥 + 1)(𝑥2 − √2𝑥 + 1) = 0  、 

             𝑄(√−1 ) = 𝑄( 𝑖 ) 上で、   𝑓(𝑥) = (𝑥2 + 𝑖)(𝑥2 − 𝑖) = 0  であるが 

             𝑄(√2 , 𝑖 ) = (𝑄(√2 )( 𝑖 ) = {𝑠 + 𝑡 𝑖 | 𝑠 , 𝑡 ∈ 𝑄(√2 ) }  

                                 = {𝑎 + 𝑏√2+ 𝑐 𝑖 + 𝑑√2 𝑖 | 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑄 }  上では 

                𝑓(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)   

            ただし、𝑥1 = (−1+ 𝑖)/√2   , 𝑥2 = (−1− 𝑖)/√2 

                                              𝑥3 = (1 + 𝑖)/√2     , 𝑥4 = (1 − 𝑖)/√2     

       のように相異なる１次式の積に分解する。そこで 

       𝑄(√2 , 𝑖 )  からそれ自身への自己同型写像は、 

     𝑒 ∶    √2   → √2         , 𝑖 →  𝑖    

                       𝜎 ∶    √2   → −√2     , 𝑖 →  𝑖   

                       𝜏 ∶    √2  → √2         , 𝑖 → − 𝑖   

                     𝜏𝜎 ∶    √2   → −√2      , 𝑖 → − 𝑖     であり、 

𝑥1 = 1  , 𝑥2 = 2  , 𝑥3 = 3   , 𝑥4 = 4  とすれば、 

𝑒 = (
1234
1234

)   , 𝜎 = (
1234
4321

)   , 𝜏 = (
1234
2143

)  , 𝜏𝜎 = (
1234
3412

) 

この場合、ガロア群 𝐺 = {𝑒  , 𝜎  , 𝜏  , 𝜏𝜎  } ≅ 𝑉  (𝐾𝑙𝑒𝑖𝑛 の 4 元群) 

 

 

◎ 一般の５次方程式  𝑥5 + 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 +𝑑𝑥 + 𝑒 = 0  は、 

４次式 𝑦 = 𝑥4 +𝐴𝑥3 +𝐵𝑥2 + 𝐶𝑥 + 𝐷 をうまく選んで、この両辺 

から 𝑥 を消去すると、  𝑦5 +𝐾𝑦 + 𝐿 = 0  の形に変換できる。 

これをチルンハウス (𝑇𝑠𝑐ℎ𝑖𝑟𝑛ℎ𝑎𝑢𝑠 1651 − 1708) 変換と言う 

（(変換の手順)）   

① はじめに、３次方程式の場合を考えてみる。 

            {
𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
𝑦 = 𝑥2 + 𝐴𝑥 + 𝐵

    

   これらより、 

   𝑥3 = 𝑥𝑥2 = 𝑥(𝑦 − 𝐴𝑥 − 𝐵) = −𝑎𝑥2 − 𝑏𝑥 − 𝑐    

 ∴ 𝑥𝑦 − 𝐴𝑥2 − 𝐵𝑥 = −𝑎𝑥2 − 𝑏𝑥 − 𝑐   

  ∴ (𝑎 − 𝐴)𝑥2 = (−𝑦 + 𝐵 − 𝑏)𝑥 − 𝑐     

  ∴ (𝑎 − 𝐴)(𝑦 − 𝐴𝑥 − 𝐵) = (−𝑦 + 𝐵 − 𝑏)𝑥 − 𝑐 

∴ (−𝐴(𝑎 − 𝐴)+ 𝑦 − 𝐵 + 𝑏)𝑥 = −(𝑎 − 𝐴)(𝑦 − 𝐵) − 𝑐   



∴  𝑥 =
−(𝑎−𝐴)(𝑦−𝐵)−𝑐

(−𝐴(𝑎−𝐴)+𝑦−𝐵+𝑏)
=
(𝐴−𝑎)𝑦−(𝐴−𝑎)𝐵−𝑐

𝑦+𝐴(𝐴−𝑎)−𝐵+𝑏
          

これをもとの２番目の式に代入すると 

    𝑦 = (
(𝐴−𝑎)𝑦−(𝐴−𝑎)𝐵−𝑐

𝑦+𝐴(𝐴−𝑎)−𝐵+𝑏
 )2 +𝐴(

(𝐴−𝑎)𝑦−(𝐴−𝑎)𝐵−𝑐

𝑦+𝐴(𝐴−𝑎)−𝐵+𝑏
  ) + 𝐵   

 整頓すると 

   𝑦3 +𝑚1𝑦
2 +𝑚2𝑦 +𝑚3 = 0           (下注 2) 

   のような 𝑦 に関する 3 次方程式が得られる。 

   ただし、ここで 

        𝑚1 = 𝑎𝐴 − 3𝐵 − 𝑎
2 + 2𝑏 

        𝑚2 = 𝑏𝐴
2 + (−𝑎𝑏 − 2𝑎𝐵 + 3𝑐 )𝐴 + 2𝑎2𝐵 − 4𝑏𝐵 + 3𝐵2 − 2𝑎𝑐  

        𝑚3 = 𝑐𝐴
3 + (−𝑏𝐵 − 𝑎𝑐  )𝐴2 + ( 𝑎𝑏𝐵 + 𝑎𝐵2 + 𝑏𝑐 − 3𝐵𝑐  )𝐴 − 𝑏2𝐵 

                               −𝑎2𝐵2 + 2𝑏𝐵2 − 𝐵3   

  これより、𝑚1 = 0  , 𝑚2 = 0 となるように、𝐴  , 𝐵 をとれば、 

             𝑦3 +𝐾 = 0 の形にできる。 

  このことは、𝑚1  , 𝑚2 の形から２次方程式を解くこと 

  なので可能である。 

  <<注 2>> 

『 この式は、シルベスタ－ ( 𝑆𝑦𝑙𝑣𝑒𝑠𝑡𝑒𝑟  1814 − 1897 ) の消去法 

による係数をとった行列式（終結式 𝑅𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡)  

     1  𝑎  𝑏  𝑐  0                         

     0  1  𝑎  𝑏  𝑐                           

          1  𝐴  𝑍  0 0      =0   (ただし、𝑍 = 𝐵 − 𝑦  ) 

          0  1  𝐴  𝑍 0                        

           0 0 1  𝐴  𝑍                          

        からも求められる。  』 

 

 

② 4 次方程式の場合も３次と同じようにして 

   𝑦4 + 𝐿 = 0 の形にできる。 （略） 

 

 

③ ５次方程式の場合 

      {
  𝑥5 + 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 
 𝑦 = 𝑥4 + 𝐴𝑥3 + 𝐵𝑥2 +𝐷𝑥 + 𝐸

          

       𝐸 − 𝑦 = 𝐹 としたとき、 



            1  𝑎  𝑏  𝑐  𝑑  𝑒  0  0  0                

            0  1  𝑎  𝑏  𝑐  𝑑  𝑒  0  0                    

       0  0  1  𝑎  𝑏  𝑐  𝑑  𝑒  0                     

          0  0  0  1  𝑎  𝑏  𝑐  𝑑  𝑒         

             1  𝐴  𝐵 𝐷 𝐹  0  0  0  0         = 0           

             0  1  𝐴  𝐵 𝐷  𝐹 0  0  0                 

       0  0  1  𝐴  𝐵  𝐷 𝐹 0  0                

       0  0  0  1   𝐴  𝐵 𝐷 𝐹 0                  

            0  0  0  0  1  𝐴  𝐵  𝐷 𝐹                  

これを解くと、 𝑦 に関する５次方程式、 

          𝑦5 + 𝐺1𝑦
4 + 𝐺2𝑦

3 + 𝐺3𝑦
2 + 𝐺4𝑦 + 𝐺5 = 0 が得られる。 

    ただし、 

  𝐺1 = ( 𝑎
3 − 3𝑎𝑏 + 3𝑐 )𝐴 +  4𝑑 + 𝑎𝐷 − 5𝐸 − 𝑎4 + 

                        4𝑎2𝑏 − 2𝑏2 − 𝑎2𝐵 + 2𝑏𝐵 − 4𝑎𝑐     

    𝐺2 = ( 𝑏
3 − 3𝑎𝑏𝑐 + 3𝑐2 + 3𝑎2𝑑 − 3𝑏𝑑 − 3𝑎𝑒)𝐴2 + (⋯⋯   )𝐴 +  ⋯⋯  

    𝐺3 = ( 𝑐
3 − 3𝑏𝑐𝑑 + 3𝑎𝑑2 + 3𝑏2𝑒 − 3𝑎𝑐𝑒 − 3𝑑𝑒 )𝐴3 + (   ⋯⋯  )𝐴2 +        

                        (    ⋯⋯   )𝐴 +⋯⋯⋯       

         𝐺4 = (𝑑
3 − 3𝑐𝑑𝑒 + 3𝑏𝑒2 )𝐴4 +   

                      (−𝐵𝑐𝑑2 − 𝑎𝑑3 + 𝑐2𝑑𝐷 − 2𝑏𝑑2𝐷 + 2𝐵𝑐2𝑒 + 𝑏𝐵𝑑𝑒 + 

                      3𝑎𝑐𝑑𝑒 + 𝑑2𝑒 − 𝑏𝑐𝐷𝑒 + 5𝑎𝑑𝐷𝑒 − 3𝑎𝑏𝑒2 − 4𝑎𝐵𝑒2 − 2𝑐𝑒2 − 

                      5𝐷𝑒2 − 2𝑐3𝐸 + 6𝑏𝑐𝑑𝐸 − 6𝑎𝑑2𝐸 − 6𝑏2𝑒𝐸 + 6𝑎𝑐𝑒𝐸 + 6𝑑𝑒𝐸 )𝐴3 +  

                      (⋯⋯       )𝐴2 + (⋯⋯       )𝐴 + ⋯⋯ 

             (
 注  𝐺𝑘 (𝑘 = 1,2,… 5) は、𝐴 , 𝐵 , 𝐷 , 𝐸 の 𝑘 次の同次式で

その係数は、𝑎 , 𝑏 , 𝑐 , 𝑑 , 𝑒  の整式である。
) 

この後、 

              {

𝐺1 = 0
𝐺2 = 0
𝐺3 = 0

   を解けば、 

       𝑦5 +𝐾𝑦 + 𝐿 = 0 の形が得られる。 

     

(

 
 

ここで注意することは、𝐺4 = 0 まで含めると

うまく４次以下の解法にもちこめなくなる。

従って  𝑦5 +𝑀 = 0 の形までにはできない。 )

 
 

 

このことは、４次方程式まで、𝑋2 = 𝐴 , 𝑋3 = 𝐾 ,   𝑋4 = 𝐿 と 

できたので、暗に５次方程式がベキ根だけでは解けないことを 

示しているかもしれない？ 



ここから 

５次方程式のガロア群 

 

５次方程式のガロア群は、チルンハウス変換によって理論上は 

        𝑥5 + 𝑎𝑥 + 𝑏 = 0 の形になるのでこの形ものを考えることにする。 

定理 1    

 𝑄 上既約な  𝑓(𝑥) = 𝑥5 + 𝑎𝑥 + 𝑏 = 0  の解を 𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5   

 とし、𝐷 = ∏ ( 𝑥𝑖 − 𝑥𝑗  )
2   (ただし、1 ≤ 𝑖 < 𝑗 ≤ 5  ) とすると 

(1)  𝐷 = 44𝑎5 + 55𝑏4    

(2)  𝐷 < 0  ならば、𝑓(𝑥) = 0  は、3 つの実数解（2 つの虚数解）をもつ 

((証明)) 

(1)    𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5  は、𝑓(𝑥) = 0 の解だから   

𝑓(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5) と書ける 

  ∴ 𝑓′(𝑥) = (𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5)  

+(𝑥 − 𝑥1)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5) 

+(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥4)(𝑥 − 𝑥5) 

+(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥5) 

+(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)      

    ∴ 𝑓′(𝑥1) = (𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥1 − 𝑥4)(𝑥1 − 𝑥5)   

                  𝑓′(𝑥2) = (𝑥2 − 𝑥1)(𝑥2 − 𝑥3)(𝑥2 − 𝑥4)(𝑥2 − 𝑥5) 

                  𝑓′(𝑥3) = (𝑥3 − 𝑥1)(𝑥3 − 𝑥2)(𝑥3 − 𝑥4)(𝑥3 − 𝑥5) 

                 𝑓′(𝑥4) = (𝑥4 − 𝑥1)(𝑥4 − 𝑥2)(𝑥4 − 𝑥3)(𝑥4 − 𝑥5) 

                 𝑓′(𝑥5) = (𝑥5 − 𝑥1)(𝑥5 − 𝑥2)(𝑥5 − 𝑥3)(𝑥5 − 𝑥4)   

     一方、 

   𝐷 = (𝑥1 − 𝑥2)
2(𝑥1 − 𝑥3)

2(𝑥1 − 𝑥4)
2(𝑥1 − 𝑥5) 

2 

                          × (𝑥2 − 𝑥3)
2(𝑥2 − 𝑥4)

2(𝑥2 − 𝑥5)
2    

                          × (𝑥3 − 𝑥4)
2(𝑥3 − 𝑥5)

2(𝑥4 − 𝑥5)
2     

   ∴ 𝐷 = ∏ 𝑓′(𝑥𝑘)           (𝑘 = 1,2,⋯ ,5)  

         = ∏(5𝑥𝑘
4 + 𝑎)              (𝑘 = 1,2,⋯ ,5) 

         =∏
(5𝑥𝑘

5+𝑎𝑥𝑘)

𝑥𝑘
          (𝑘 = 1,2,⋯ ,5)  

=∏
(5(−𝑎𝑥𝑘−𝑏)+𝑎𝑥𝑘)

𝑥𝑘
      (𝑘 = 1,2,⋯ ,5) 



=∏
(−4𝑎𝑥𝑘−5𝑏)

𝑥𝑘
          (𝑘 = 1,2,⋯ ,5) 

     ここで 

  分子＝∏ (−4𝑎𝑥𝑘 − 5𝑏)    (𝑘 = 1,2,⋯ ,5) 

        =−(4𝑎𝑥1 + 5𝑏)(4𝑎𝑥2 + 5𝑏)(4𝑎𝑥3 + 5𝑏)(4𝑎𝑥4 + 5𝑏)(4𝑎𝑥5 + 5𝑏) 

        =−{ (4𝑎)5𝑥1𝑥2𝑥3𝑥4𝑥5 

            +(4𝑎)4(5𝑏)(𝑥1𝑥2𝑥3𝑥4 +⋯⋯   + 𝑥2𝑥3𝑥4𝑥5)  

            +(4𝑎)3(5𝑏)2(𝑥1𝑥2𝑥3 +⋯⋯⋯      + 𝑥3𝑥4𝑥5)          

            +(4𝑎)2(5𝑏)3(𝑥1𝑥2 +⋯⋯⋯⋯           + 𝑥4𝑥5) 

            +(4𝑎)(5𝑏)4(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5)    

            +(5𝑏)5  }    

            （ 解と係数との関係より） 

    =−{ (4𝑎)5(−𝑏) + (4𝑎)4(5𝑏)𝑎 + 0 + 0 + 0+ (5𝑏)5  }   

        =−{ 44𝑎5𝑏 + 55𝑏5  }  

    分母＝∏ 𝑥𝑘  =  𝑥1𝑥2𝑥3𝑥4𝑥5 = −𝑏      

    ∴ 𝐷 =
−{ 44𝑎5𝑏+55𝑏5  }

−𝑏
 = 44𝑎5 + 55𝑏4           

   

(2)   𝑓(𝑥) = 0 は、既約としたから、 

    𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5  は異なるとしてよい 

   また、 

   𝐷 = (𝑥1 − 𝑥2)
2(𝑥1 − 𝑥3)

2(𝑥1 − 𝑥4)
2(𝑥1 − 𝑥5) 

2 

                          × (𝑥2 − 𝑥3)
2(𝑥2 − 𝑥4)

2(𝑥2 − 𝑥5)
2    

                          × (𝑥3 − 𝑥4)
2(𝑥3 − 𝑥5)

2(𝑥4 − 𝑥5)
2 

       であるから、 

   ○ア 解が 5 つとも実数ならば、𝐷 > 0   

      ○イ 3 つの解が実数で 2 つの解が虚数（共役）ならば、 

     たとえば、𝑥1  , 𝑥2  , 𝑥3 を実数、𝑥4  , 𝑥5 を共役な複素数 

     としたとき、 

     (𝑥1 − 𝑥4)(𝑥1 − 𝑥5) > 0   

     (𝑥2 − 𝑥4)(𝑥2 − 𝑥5) > 0   

                       (𝑥3 − 𝑥4)(𝑥3 − 𝑥5) > 0   

          また、(𝑥4 − 𝑥5) は、純虚数で (𝑥4 − 𝑥5)
2 < 0    

          その他、(𝑥1 − 𝑥2)、(𝑥1 − 𝑥3)  、(𝑥2 − 𝑥3) は実数 

     以上より、𝐷 < 0   

 



       ○ウ 1 つの解が実数で 4 つの解が虚数（共役が２組） 

ならば、たとえば、𝑥1  が実数、𝑥2 と 𝑥3 、𝑥4 と 𝑥5 が 

それぞれ共役な複素数としたとき、 

                         (𝑥1 − 𝑥2)(𝑥1 − 𝑥3) > 0   

        (𝑥1 − 𝑥4)(𝑥1 − 𝑥5) > 0   

                             (𝑥2 − 𝑥4)(𝑥3 − 𝑥5) > 0   

                             (𝑥2 − 𝑥5)(𝑥3 − 𝑥4) > 0 

            また、(𝑥2 − 𝑥3) は、純虚数で (𝑥2 − 𝑥3)
2 < 0   

(𝑥4 − 𝑥5) は、純虚数で (𝑥4 − 𝑥5)
2 < 0 

         以上より、𝐷 > 0   

 

        ○ア、○イ、○ウ 以外に 𝑓(𝑥) = 0 の解の持ち方はなく 

    逆に、𝐷 < 0 ならば、𝑓(𝑥) = 0  は、3 つの実数解と 

2 つの虚数解をもつ   

 

定理 2    

 𝑄 上既約な素数 𝑝 次の方程式  𝑓(𝑥) = 0  がちょうど 2 つの 

虚数解をもつならば、そのガロア群 は、対称群 𝑆𝑝 に同型 

である 

   

  （証明） 

   𝑓(𝑥) = 0 は𝑄 上で既約であるから、相異なる 𝑝 個の解 

   𝛼1  , 𝛼2  ,⋯⋯ ,𝛼𝑝−2  , 𝛽1  , 𝛽2 をもつ。 

   （ただし、𝛼1  , 𝛼2  ,⋯⋯ ,𝛼𝑝−2 は実数で  𝛽1  , 𝛽2 は共役な複素数） 

   𝑓(𝑥) の𝑄 上の最小分解体(𝑓(𝑥)を一次式に分解できる最小の拡大体) を 

              𝐾 、そのガロア群を𝐺 = 𝐺(𝐾/𝑄) とすれば、𝐺 は 𝑓(𝑥) = 0 の 

解全体の置換であるから、𝑆𝑝 の部分群 𝐻 と同型である。 

   𝛼1 = 𝛼 とすると、𝑄(𝛼) ⊂ 𝐾 で、 

[𝑄(𝛼) ∶ 𝑄] = (𝑄(𝛼)の 𝑄 上の拡大次数) = 𝑝  である。  

      ∴ | 𝐺 | = (𝐺の位数) = | 𝐾/𝑄 | = |𝐾/𝑄(𝛼) | ⋅ |𝑄(𝛼)/𝑄 | より 

     | 𝐺 | は、𝑝 で割り切れる。 

     | 𝐺 | は、| 𝑆𝑝 | = 𝑝 !  の約数だから、| 𝐺 | = 𝑝   

       したがって、 𝐺 は、位数 𝑝  の元  𝜏 を含む。 

   また、𝐺 は、位数 2  の元 𝜎 ∶  𝛽1  →  𝛽2  をもつ。 



    そこで、𝐻 は 𝜏 に対応する位数 𝑝  の巡回置換(1 2… . .  𝑝)  と 

    𝜎 に対応する互換 (1 2) をもつと思ってよい。 

    この 2 つの置換によって、 𝑆𝑝 が生成されるから（下注 3） 

    𝐻 = 𝑆𝑝       ∴𝐺 ≅ 𝑆𝑝    

 

  <<注 3>> 

   『 𝑛 次対称群 𝑆𝑛 の元は、たとえば、(
1234… . . 𝑛
2413… . . 𝑛

) = (1 3)(2 3)(3 4)  

     のように互換の積で表されるがその互換は、 

 𝜎 = (1 2) と 𝜏 = (1 2 … . 𝑛) によって、 

            (2 3) = 𝜏𝜎𝜏−1   , (3 4) = 𝜏2𝜎𝜏−2  , …… . . , (𝑛 − 1  𝑛) = 𝜏𝑛−2𝜎𝜏−(𝑛−2)   

            (1 3) = (2 3)(1 2)(2 3)    , 

            (1 4) = (3 4)(1 3)(3 4)    ,……… . , (1 𝑛) = (𝑛 − 1 𝑛)(1 𝑛 − 1)(𝑛 − 1 𝑛) 

ように作られる。これより 

   𝑆𝑛  は、𝜎 = (1 2) と 𝜏 = (1 2 … . 𝑛) で生成される。 』  

 

 

 定理 3   定理 1、2 より、 

  𝑓(𝑥) = 𝑥5 + 𝑎𝑥 + 𝑏 = 0  が 𝑄 上既約であり、𝐷 = 44𝑎5 + 55𝑏4 < 0  

ならば、𝑓(𝑥) = 0  のガロア群は、𝑆5 （5 次対称群）と同型である。 

 

     （例 1） 𝑥5 − 4𝑥 + 2 = 0   のガロア群 𝐺  

          これは整数の範囲内で既約であり、 

                       𝑄 上で既約である。（𝐺𝑎𝑢𝑠𝑠  の補題） 

     𝐷 = 44(−4)5 + 5524 = −212144 < 0   

          これより、𝐺 ≅ 𝑆5   

 

      （例 2） 𝑥5 − 2𝑝𝑥 + 𝑝 = 0  (𝑃 は素数)のガロア群 𝐺  

     これは、第 2 項の係数が、𝑝  で割り切れ、 

末項の係数が、𝑝2  で割り切れないから、 

𝐸𝑖𝑠𝑒𝑛𝑠𝑡𝑒𝑖𝑛  の判定法より 𝑄 上で既約である。 

                      𝐷 = 44(−2𝑝)5 + 55𝑝4 = (3125 − 8192𝑝)𝑝4 < 0   

          これより、  𝐺 ≅ 𝑆5  

 

 



    定理 4 

  𝑓(𝑥) = 𝑥5 + 𝑎𝑥 + 𝑏 = 0  ( 𝑄 上既約 )のガロア群  𝐺  において、 

√𝐷 = √44𝑎5 + 55𝑏4  ∈ 𝑄   ならば、𝐺 ⊆ 𝐴5  （５次交代群） 

 

  （（証明）） 

    仮定より、 

                 𝑓(𝑥) = 0 の解を   𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5  とすると 

                 √𝐷 = (𝑥1 − 𝑥2)(  (𝑥1 − 𝑥3)( 𝑥1 − 𝑥4)( 𝑥1 − 𝑥5)   

                    × (𝑥2 − 𝑥3)(𝑥2 − 𝑥4)( 𝑥2 − 𝑥5) 

                                             × (𝑥3 − 𝑥4)( 𝑥3 − 𝑥5)(𝑥4 − 𝑥5) 

    𝑄 ⊂ 𝑄(√𝐷 ) ⊂ 𝑄( 𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5 ) より 

    𝑄(√𝐷 ) = 𝐿0     , 𝑄( 𝑥1  , 𝑥2  , 𝑥3  , 𝑥4  , 𝑥5 ) = 𝐿   とすれば 

    𝐺( 𝐿/𝐿0 ) = 𝐺
′  の任意の元 𝜎 は、√𝐷 を不変にするから 

    𝜎( √𝐷 ) = √𝐷   

        一方、√𝐷 はその形から、𝐴5 (偶置換全体)の元によっても 

変わらない。 ゆえに、𝜎 ∈ 𝐺′⋂𝐴5   

        ∴ 𝐺′ ⊆ 𝐺′⋂𝐴5  

        特に、 √𝐷 ∈ 𝑄  のとき、𝐿0  = 𝑄 で𝐺
′ = 𝐺 

        ∴ 𝐺 ⊆ 𝐺⋂𝐴5 

        逆は当然だから、𝐺 = 𝐺⋂𝐴5     ∴𝐺 ⊆ 𝐴5   

 

 

 𝑓(𝑥) = 0 を 𝑄 上既約な５次方程式とし、そのガロア群を 𝐺とすれば、 

  𝐺 は可移群（下注 4）でその位数は 5 の倍数、しかも 𝑆5 の部分群に 

 同型だから、5 ! = 120 = 5 × 23 × 3  の約数である。これより、 

 𝐺 としては、一応、位数が、120 の 𝑆5 , 60 の 𝐴5 , 40, 30 , 20 (𝐹20 ), 15  , 

10 (𝐷10) ,5 (𝐶5 )  の８通り(4 × 2 ）ものが考えられるが、 

𝐴5 が単純群（下注 5）であることなどを考え合わせると、𝐺 としては 

次の  𝑆5 ,  𝐴5 , 𝐹20   ,𝐷10  ,   𝐶5  の５通りのいずれかと同型である。 

 

𝑆5  … 位数 120 の 5 次対称群（５個の数の置換全体） 

𝐴5   … 位数 60 の 5 次交代群（５個の数の偶置換全体） 

𝐹20   … 位数 20 の群 

   { (
12345

12345
)  (

12345

23451
)  (

12345

34512
) (

12345
45123

)  (
12345
51234

) 



       (
12345
15432

)  (
12345
32154

)  (
12345
54321

) (
12345
21543

)  (
12345
43215

) 

       (
12345
13524

)  (
12345
24135

)  (
12345
35241

) (
12345
41352

)  (
12345
52413

) 

       (
12345
14253

)  (
12345
25314

)  (
12345
31425

) (
12345
42531

)  (
12345
53142

)  } 

    これは、置換 𝜎 = (
12345
23451

)   と 𝜏 = (
12345
13524

) よって生成される群で 

    実際に {  𝑖  , 𝜎  , 𝜎2  , 𝜎3 , 𝜎4,   𝜏  , 𝜏2  , 𝜏3  , 𝜏𝜎  , 𝜏𝜎2, 𝜏𝜎3, 𝜏𝜎4 ,   

          𝜏2𝜎  , 𝜏2𝜎2  , 𝜏2𝜎3  , 𝜏2𝜎4  , 𝜏3𝜎  , 𝜏3𝜎2 , 𝜏3𝜎3  , 𝜏3𝜎4   }  である。 

   𝐷10   … 位数 10 の群 

  これは正五角形の回転や鏡映によって得られるもの。 

                                                                             

                                                                            

                                                                               

                                                                        

                                                                          

                                                                          

{(12345
12345

)  (
12345
23451

)  (
12345
34512

) (
12345
45123

)  (
12345
51234

)                                   

(
12345
15432

)  (
12345
32154

)  (
12345
54321

) (
12345
21543

)  (
12345
43215

) }                              

  𝐶5   … 位数 5 の巡回群                                                      

     {(12345
12345

)  (
12345
23451

)  (
12345
34512

) (
12345
45123

)  (
12345
51234

) }                   

       これを < (12345) >と表せば、 

    <(12345)>=<(13524)>=<(14253)>=<(15432)>である。 

なお、𝐷10 と𝐹20  は、（例えば）次のようにも考えられる。 

     𝐷10 ≅ 𝐶5⋃(
12345
15432

)𝐶5             , (
12345
15432

) ∈偶置換 

                   𝐹20 ≅ 𝐷10⋃(
12345
13524

) 𝐷10          , (
12345
13524

) ∈奇置換         𝑆5           

                                                                                  𝐹20                 

    また、𝐹20 ∋ (
12345
13524

) = (2 4)(3 4)(4 5) ∉ 𝐴5  より                𝐴5            

     𝐹20  ⊄   𝐴5                                                                 𝐷10             

  以上から                                                                  

  𝑄 上既約な５次方程式のガロア群の包含              𝐶5     

関係は右図のようになる。                     

1 

2 5 

3

1

4

1 



                   

   <<注 4 >>  

 『任意な 𝑖 , 𝑗 ∈ 𝑋 = {1,2,… . 𝑛} に対して、𝜎(𝑖) = 𝑗  となる 𝜎 ∈ 𝐺 が 

存在するとき、𝐺 を( 𝑋 上の)可移群という。 

  たとえば、 𝑋 = {1,2,3}  のとき 

  {(
123
123

) , (
123
231

) , (
123
312

) } = 𝐴3  や  𝑆3 は、可移群であるが 

  {(
123
123

) , (
123
132

)  } = 𝐻 は置換群だが可移群でない。 

  𝑋 = {1,2,3} 上の可移群は 𝐴3  と  𝑆3 であり、その位数は３の倍数。 

   なお、 𝑄 上既約な、𝑓(𝑥) = 0 のガロア群は可移群である。（逆も成立） 

   たとえば、𝑄 上既約な𝑥3 − 3𝑥 + 1 = 0  ⟺  ガロア群 𝐴3 は可移的。 

𝑄 上可約な𝑥3 − 3𝑥 − 18 = (𝑥 − 3)(𝑥2 + 3𝑥 + 6) = 0   

                          ⟺  𝑥1 = 3と考えたとき,ガロア群 は{(
123
123

) , (
123
132

)  }で、可移的でない。  』 

 

  <<注 5 >> 

 『単純群とは、正規部分群として、それ自身と単位群{ 𝑖 } しか 

  もたないものをいう。ここで、𝐻 が 𝐺 の正規部分群とは 

  任意の 𝜎 ∈ 𝐺 に対し、𝜎𝐻 = 𝐻𝜎 が成り立つことである。 

  𝐴3 = {(
123
123

) , (
123
231

) , (
123
312

) }  は  𝑆3  の正規部分群である。 

  たとえば、𝜎 = (
123
132

) ∈ 𝑆3 に対して 

  𝜎 (
123
123

) = (
123
132

)(
123
123

) = (
123
132

)      , (
123
123

)𝜎 = (
123
132

)   

         𝜎 (
123
231

) = (
123
132

)(
123
231

) = (
123
321

)      , (
123
231

)𝜎 = (
123
213

)      

         𝜎 (
123
312

) = (
123
132

)(
123
312

) = (
123
213

)      , (
123
312

)𝜎 = (
123
321

)    

     ∴ この場合、  𝜎𝐴3 = 𝐴3𝜎    』 

 

  定理 5   

      『 有限体上の既約多項式(方程式)のガロア群は巡回群である 』 

   たとえば、 

      整数全体 𝑍 の素数 𝑝 を法とした剰余類の集合（有限体）を 



    𝐹𝑝 = { 0 ,1 ,2 , ……… , 𝑝 − 1 } で表すことにし、 

𝐾 = 𝐹3 = {0 ,1 ,2} としたとき、 

𝑓(𝑥) = 𝑥3 − 𝑥 − 1 は、𝐾 上既約であり、（0, 1 ,2 を代入してみるとよい） 

    𝛼 を𝑓(𝑥) = 0 の１解とすれば、𝑓(𝛼) = 𝛼3 − 𝛼 − 1 = 0 で 

残りの 2 解は、𝛼 + 1  , 𝛼 + 2 である。実際、 

   𝑓(𝛼 + 1) = (𝛼 + 1)3 − (𝛼 + 1) − 1 = 𝛼3 + 1 − 𝛼 − 1 + 1 = 0 

                𝑓(𝛼 + 2) = (𝛼 + 2)3 − (𝛼 + 2) − 1 = 𝛼3 + 2 − 𝛼 − 2 + 1 = 0 

      𝐾(𝛼) ∋ 𝛼 , 𝛼 + 1 , 𝛼 + 2  はすべて異なるから、𝑓(𝑥) は 

    分離多項式(重解がない)と言え、𝐾(𝛼) は 𝐾 上既約な 𝑓(𝑥) の 

最小分解体 となり、𝐾 のガロア拡大である。 

      ガロア群 𝐺(𝐾(𝛼)/𝐾 ) は、 

   𝑖  ∶  𝛼 → 𝛼               ( 𝛼 + 1 → 𝛼 + 1   ,     𝛼 + 2 → 𝛼 + 2 ) 

 𝜎 ∶  𝛼 → 𝛼 + 1       (  𝛼 + 1 → 𝛼 + 2  ,     𝛼 + 2 → 𝛼         )    

              𝜎2 ∶  𝛼 → 𝛼 + 2       ( 𝛼 + 1 → 𝛼         ,       𝛼 + 2 → 𝛼 + 1  ) 

であり、𝜎  の生成する巡回群である。 

 

 

 （例 3）𝑓(𝑥) = 𝑥5 + 20𝑥 + 16 = 0  のガロア群 𝐺  

これは、 𝑄 上で既約であり 

   𝐷 = 44(20)5 + 55(16)4 = 48 ∙ 56    

         ∴    √𝐷 = 44 ∙ 53  ∈ 𝑄   

         ∴ 𝐺 ⊆ 𝐴5 

         ここで、𝑓(𝑥) を 𝑚𝑜𝑑  7 で因数分解すると 

       (𝑥 + 2)(𝑥 + 3)(𝑥3 + 2𝑥2 − 2𝑥 − 2)  （下注 6） 

     これより、𝐺 は、３項の巡回置換を含むことになる。（下注 7） 

   また、𝐴5 は３項の巡回置換から生成されるから  （下注 8） 

     𝐺 ≅ 𝐴5   

 

   <<注 6 >> 実際に 

     (𝑥 + 2)(𝑥 + 3)(𝑥3 + 2𝑥2 − 2𝑥 − 2) 

          = 𝑥5 + 7𝑥4 + 14𝑥3 − 22𝑥 − 12 

      ≡ 𝑥5 + 20𝑥 + 16        (𝑚𝑜𝑑  7) 

<<注 7 >> 

          𝑛 次の整係数の既約多項式 𝑓(𝑥) が、𝑚𝑜𝑑   𝑝  （𝑝 素数） 

で  𝑠  次、𝑡  次、……の既約多項式に分解されるとき、 

𝑓(𝑥) のガロア群 𝐺 は、 



（ 𝑠  項の巡回置換）×（ 𝑡  項の巡回置換）× ∙∙∙∙∙∙∙∙∙∙∙∙   

         の型の置換を含む。 

 

<<注 8 >> 

      「 𝑛 − 2   (𝑛 ≥ 3)個の３項の巡回置換、(1 2 3), (1 2 4), (1 2 5),… . . , (1  2  𝑛)は 

     𝐴𝑛 を生成する。 」 

    （証明） 

     𝑠𝑛 の元は、すべて互換 (𝑖  𝑗) の積として表され、 

    (𝑖  𝑗) = (1  𝑖)(1  𝑗)(1  𝑖)        (ただし、𝑖 ≠ 𝑗  , 𝑖 ≠ 1  , 𝑗 ≠ 1 ) 

             ここで、𝑗 = 2  なら (1 𝑖)(1  2) = (1  2  𝑖)   

                                        𝑖 = 2  なら (1 2)(1  𝑗) = (1  𝑗  2) = (1  2  𝑗)2   

                                      𝑖  , 𝑗 ≥ 3  なら (1  𝑖)(1  𝑗) = (1  𝑖)(1  2)(1  2)(1  𝑗) 

                                = (1  2  𝑖)(1  2  𝑗)2   

また、(1  2  𝑘) = (1  𝑘)(1  2)  ∈ 𝐴𝑛       (3 ≤ 𝑘 ≤ 𝑛)  

これより 𝐴𝑛 は、(1 2 3), (1 2 4), (1 2 5),… . ., (1  2  𝑛) の形の巡回置換に 

よって生成される。 

 

 

（例 4）𝑓(𝑥) = 𝑥5 + 15𝑥 − 12 = 0 

これは、 𝑄 上で既約であり 

                             𝐷 = 44(15)5 + 55(−12)4 = 44 ∙ 55 ∙ 34(3 + 1)   

         ∴    √𝐷 = 42 ∙ 52 ∙ 32 ∙ 2√5 = 7200√5  ∉ 𝑄   

         ∴ 𝐺 ⊄ 𝐴5     ∴𝐺 ≅ 𝑆5  か 𝐹20  

         また、 

                     𝑓(𝑥) ≡ (𝑥 + 1)(𝑥4 + 6𝑥3 + 𝑥2 + 6𝑥 + 2)         ( 𝑚𝑜𝑑  7)  

                     𝑓(𝑥) ≡ (𝑥 + 5)(𝑥2 + 8𝑥 + 9)( 𝑥2 + 9𝑥 + 10 )       ( 𝑚𝑜𝑑  11) 

これらより、𝐺 は(４項の巡回置換)と( 互換の積)を含む。 

∴ 𝐺 ≅ 𝐹20  

           

 

(例 5)  𝑓(𝑥) = 𝑥5 + 20𝑥 − 32 = 0 

これは、 𝑄 上で既約であり 

                             𝐷 = 44(20)5 + 55(−32)4 = 49 ∙ 55(1 + 4) = 218 ∙ 56   

         ∴    √𝐷 = 29 ∙ 53 = 64000 ∈ 𝑄   

         ∴ 𝐺 ⊆ 𝐴5 



また、𝑓(𝑥) ≡ (𝑥 + 10)(𝑥2 + 5𝑥 + 3)(𝑥2 + 7𝑥 + 7)          (𝑚𝑜𝑑  11)  

これより、𝐺 は互換の積を含む。 

∴ 𝐺 ≠ 𝐶5   

∴ 𝐺 は、𝐷10  か𝐴5      (𝐹20 ⊄ 𝐴5) 

𝑓(𝑥) = 0 の解を 𝛼1  , 𝛼2    ,…….,𝛼5  とし、 

𝐿 = 𝑄( 𝛼1  , 𝛼2    ,…….,𝛼5) を𝑓(𝑥) の最小分解体とすると、 

𝛼𝑖 + 𝛼𝑗    (1 ≤ 𝑖 < 𝑗 ≤ 5) は、10 個の異なる 𝐿 の元であり 

𝑔(𝑥) = ∏(𝑥 − (𝛼𝑖 +𝛼𝑗))        (1 ≤ 𝑖 < 𝑗 ≤ 5) を考えると 

𝑓(𝑥) = 0 のガロア群 𝐺 = 𝐺(𝐿/𝑄) ∋ 𝜎  に対し 

                        𝜎(𝑔(𝑥)) = ∏(𝑥 − (𝜎(𝛼𝑖) + 𝜎(𝛼𝑗))) 

= ∏(𝑥 − (𝛼𝑖 + 𝛼𝑗))   (全体として) 

                                         = 𝑔(𝑥)  

∴ 𝑔(𝑥) ∈ 𝑄[𝑥]      (𝑄 係数の多項式) 

また、𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 +𝛼5 = 0  ( 解と係数との間の関係)より 

                                     𝛼1 = −(𝛼2+𝛼3) − (𝛼4+𝛼5) 

                                     𝛼2 = −(𝛼1 + 𝛼3) − (𝛼4 + 𝛼5) 

        ･･････････････ 

                                     𝛼5 = −(𝛼1 + 𝛼2) − (𝛼3 + 𝛼4) 

𝛼1  , 𝛼2    ,…….,𝛼5 は、𝛼𝑖 + 𝛼𝑗    (1 ≤ 𝑖 < 𝑗 ≤ 5) で書け 

                       𝑄( 𝛼1  , 𝛼2    ,…….,𝛼5) ⊆ 𝑄(𝛼𝑖 + 𝛼𝑗)  

逆は、当然で  𝑄(𝛼𝑖 + 𝛼𝑗) ⊆ 𝑄( 𝛼1  , 𝛼2    ,…….,𝛼5)  

∴ 𝐿 = 𝑄( 𝛼1  , 𝛼2    ,…….,𝛼5) = 𝑄(𝛼𝑖 + 𝛼𝑗) 

∴ 𝐿 は、𝑔(𝑥) の最小分解体にもなっている。 

∴ 𝑔(𝑥) のガロア群も𝐺 である。 

ここで、𝑓(𝑥) = 0 (または𝑔(𝑥) = 0 )のガロア群を 𝐴5 と仮定すると 

𝐴5 全体で、𝑔(𝑥) = 0 の解、𝛼1 + 𝛼2(= 𝛽1)  , 𝛼1 + 𝛼3(= 𝛽2) , …… .. 

  𝛼4 + 𝛼5(= 𝛽10) は、可移的（推移的）であるから、𝑔(𝑥) は、 

(𝑄 上)既約である。（注 4 を参照） 

しかるに、𝑔(𝑥) は、コンピュ－タ－を使って計算すると、 

                       𝑔(𝑥) = 𝑥10 − 60𝑥6 + 352𝑥5 − 1600𝑥2 − 2560𝑥 − 1024    

                                       = (𝑥5 − 10𝑥3 + 20𝑥2 + 40𝑥 + 16) × (𝑥5 + 10𝑥3 − 20𝑥2 − 64) 

のとおり、(𝑄 上)可約だとわかる。（これは矛盾。） 

よって、 𝐺 ≅ 𝐷10  



 

      (例 6）𝑓(𝑥) = 𝑥5 + 𝑥4 − 12𝑥3 − 21𝑥2 + 𝑥 + 5 = 0 のガロア群 𝐺  

             コンピュ－タ－を使って計算すると、 

      √𝐷 = ∏(𝛼𝑖 − 𝛼𝑗)         (1 ≤ 𝑖 < 𝑗 ≤ 5)    

                                   = 4805 ∈ 𝑄 

           ∴ 𝐺 ⊆ 𝐴5  

          𝑚𝑜𝑑  𝑝 (素数)で分解を試みると、 

     𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1                       (𝑚𝑜𝑑  2)  既約 

                      𝑥5 + 𝑥4 + 𝑥 + 2                                  (𝑚𝑜𝑑  3)  既約 

                      𝑥(𝑥 + 1)(𝑥 + 3)2(𝑥 + 4)                 (𝑚𝑜𝑑  5)   

                       𝑥5 + 𝑥4 + 2𝑥3 + 𝑥 + 5                    (𝑚𝑜𝑑  7)  既約 

                       𝑥5 + 𝑥4 + 10𝑥3 + 𝑥2 + 𝑥 + 5         (𝑚𝑜𝑑  11)  既約 

                       𝑥5 + 𝑥4 + 𝑥3 + 5𝑥2 + 𝑥 + 5            (𝑚𝑜𝑑  13)  既約 

                       𝑥5 + 𝑥4 + 5𝑥3 + 13𝑥2 + 𝑥 + 5        (𝑚𝑜𝑑  17)  既約 

                       𝑥5 + 𝑥4 + 7𝑥3 + 17𝑥2 + 𝑥 + 5        (𝑚𝑜𝑑  19)  既約 

                       𝑥5 + 𝑥4 + 11𝑥3 + 2𝑥2 + 𝑥 + 5        (𝑚𝑜𝑑  23)  既約 

                       𝑥5 + 𝑥4 + 17𝑥3 + 8𝑥2 + 𝑥 + 5        (𝑚𝑜𝑑  29)   既約 

                  (𝑥 + 25)5                                                 (𝑚𝑜𝑑  31)    

                      (𝑥 + 10)(𝑥 + 18)(𝑥 + 20)(𝑥 + 31)(𝑥 + 33)       (𝑚𝑜𝑑  37) 

                       𝑥5 + 𝑥4 + 29𝑥3 + 20𝑥2 + 𝑥 + 5        (𝑚𝑜𝑑  41) 既約 

          …………………………………. 

          これより、（おそらく）𝐺 は５項の巡回置換以外の置換を 

     含まないことになり、  𝐺 ≅ 𝐶5    （下注 9） 

なお、(1 次) (1 次) (1 次) (1 次) (1 次)の 𝑚𝑜𝑑  分解は、 

(1 項の巡回置換)×……×(1 項の巡回置換)、つまり 

恒等置換を意味する。 

 

    <<注 9 >> 

『 実際、𝐺 ≅ 𝐶5 であることは次の通り。 

𝑓(𝑥) = 𝑥5 + 𝑥4 − 12𝑥3 − 21𝑥2 + 𝑥 + 5 = 0 の 5 つの 

解 𝛼1  , 𝛼2  , 𝛼3  , 𝛼4  , 𝛼5 は、実は 

 𝜁 を 1 の原始 31 乗根(𝜁31 = 1, 𝜁 ≠ 1)とすれば、 

                  𝛼1 = 𝜁 + 𝜁
5 + 𝜁6 + 𝜁25 + 𝜁26 + 𝜁30   

                  𝛼2 = 𝜁
3 + 𝜁15 + 𝜁18 + 𝜁13 + 𝜁16 + 𝜁28 

                  𝛼3 = 𝜁
9 + 𝜁14 + 𝜁23 + 𝜁8 + 𝜁17 + 𝜁22 

                  𝛼4 = 𝜁
27 + 𝜁11 + 𝜁7 + 𝜁24 + 𝜁20 + 𝜁4 



                  𝛼5 = 𝜁
19 + 𝜁2 + 𝜁21 + 𝜁10 + 𝜁29 + 𝜁12 

      で表され、𝑄(𝜁) からそれ自身への自己同型写像を 

   𝜎 ∶  𝜁 → 𝜁3    , 𝜁2 → 𝜁6   , 𝜁3 → 𝜁9   , 𝜁4 → 𝜁12  , 𝜁5 → 𝜁15 

                      𝜁6 → 𝜁18    , 𝜁7 → 𝜁21   , 𝜁8 → 𝜁24   , 𝜁9 → 𝜁27  , 𝜁10 → 𝜁30 

                    𝜁11 → 𝜁2    , 𝜁12 → 𝜁5   , 𝜁13 → 𝜁8   , 𝜁14 → 𝜁11  , 𝜁15 → 𝜁14 

                   𝜁16 → 𝜁17    , 𝜁17 → 𝜁20   , 𝜁18 → 𝜁23   , 𝜁19 → 𝜁26  , 𝜁20 → 𝜁29 

                   𝜁21 → 𝜁       , 𝜁22 → 𝜁4   , 𝜁23 → 𝜁7   , 𝜁24 → 𝜁10  , 𝜁25 → 𝜁13 

                   𝜁26 → 𝜁16    , 𝜁27 → 𝜁19   , 𝜁28 → 𝜁22   , 𝜁29 → 𝜁25  , 𝜁30 → 𝜁28 

        とすれば、 

    𝜎(𝛼1) = 𝛼2   , 𝜎(𝛼2) = 𝛼3   , 𝜎(𝛼3) = 𝛼4   , 𝜎(𝛼4) = 𝛼5   , 𝜎(𝛼5) = 𝛼1      

        となる。 

        𝑓(𝑥) の最小分解体 𝑄( 𝛼1  , 𝛼2    ,…….,𝛼5)は、 

                      𝛼2 =
3𝛼1

4 − 𝛼1
3 − 33𝛼1

2 − 24𝛼1 + 15

5
 

                      𝛼3 =
−2𝛼1

4 − 𝛼1
3 + 22𝛼1

2 + 31𝛼1
5

 

                      𝛼4 =
𝛼1
4 − 2𝛼1

3 − 6𝛼1
2 + 2𝛼1 − 10

5
 

                      𝛼5 =
−2𝛼1

4 + 4𝛼1
3 + 17𝛼1

2 − 14𝛼1 − 10

5
 

       と表されることから、𝑄( 𝛼1  , 𝛼2    ,…….,𝛼5) = 𝑄(𝛼1) であって、 

    ガロア群𝐺 = 𝐺(𝑄(𝛼1)/𝑄) は、𝜎 を𝑄(𝛼1) 上に制限した 

                   𝜎 ∶  𝛼1 → 𝛼2   , 𝛼2 → 𝛼3   , 𝛼3 → 𝛼4    , 𝛼4 → 𝛼5    𝛼5 → 𝛼1   

を用いて、𝐺 = {1  , 𝜎  , 𝜎2  , 𝜎3  , 𝜎4 } ≅ 𝐶5     』  

 

 

 

 

 

 

 

 

 

 

  

 



  〖まとめ〗 

 これまでのことから、 

 ５次方程式のガロア群（その 1） 

  𝑄 上既約な５次方程式𝑓(𝑥) = 𝑥5 + 𝑎𝑥 + 𝑏 = 0 のガロア群を 

  𝐺 とし、𝑓(𝑥) = 0 の判別式を𝐷 = 44𝑎5 + 55𝑏4 としたとき、 

(1)  𝐷 < 0     ⟹        𝐺 ≅ 𝑆5   

(2)  𝐷 > 0   

① √𝐷 ∈ 𝑄     →    𝐺 ⊆ 𝐴5   

     ∴ 𝐺 ≅ 𝐴5   か 𝐷10 か 𝐶5  

           素数 𝑝 の 𝑚𝑜𝑑  分解で、(1 次)(2 次)(2 次)が得られ、 

      𝑔(𝑥) = ∏(𝑥 − (𝛼𝑖 + 𝛼𝑗))        (1 ≤ 𝑖 < 𝑗 ≤ 5) において、 

 （𝛼1～𝛼5 は𝑓(𝑥) = 0の 5つの解) 

           𝑔(𝑥)が既約 ⟹  𝐺 ≅ 𝐴5 

                             𝑔(𝑥)が可約 ⟹  𝐺 ≅ 𝐷10  

② √𝐷 ∉ 𝑄     →    𝐺 ⊄ 𝐴5   

     ∴ 𝐺 ≅ 𝑆5  か 𝐹20   

           素数 𝑝 の 𝑚𝑜𝑑  分解で、 

                            {
(1次) (4次)

(1次)(2次)(2次)
   ⟹   𝐺 ≅  𝐹20   

(２次)(３次)              ⟹ 𝐺 ≅ 𝑆5 

 

◎   𝑄 上既約な５次方程式を𝑓(𝑥) = 0 とし、𝑓(𝑥) の最小分解体を𝐿 とする。 

 このとき、𝑓(𝑥) = 0 がガロア群 𝐺(𝐿/𝑄) として 𝐹20をもてば、 

 𝑓(𝑥) = 0 の 1 つの解を 𝛼 としたとき、𝑄 ⊆ 𝑄(𝛼) ⊆ 𝐿 において 

 20 = [𝐿 ∶ 𝑄 ] = [𝐿 ∶ 𝑄(𝛼) ] ∙ [𝑄(𝛼): 𝑄 ] = [𝐿 ∶ 𝑄(𝛼)] ∙ 5    

   ∴ [𝐿 ∶ 𝑄(𝛼)] = 4   

   これより、𝑓(𝑥) は、𝑄(𝛼) 上で定数倍を除いて、 

  𝑓(𝑥) = (𝑥 − 𝛼)(𝛼を含む 𝑥 についての 4次式) と分解される。 

  たとえば、𝑓(𝑥) = 𝑥5 + 15𝑥 − 12 

                 = (𝑥 − 𝛼)(𝑥4 + 𝛼𝑥3 + 𝛼2𝑥2 + 𝛼3𝑥 + 𝛼4 + 15 ) 

   したがって、このような場合に𝑓(𝑥) をある素数 𝑝 の 𝑚𝑜𝑑  分解をすれば 

  (1次)(4次)の分解が得られる。 

 ◎ 同様に考えると 

         𝑓(𝑥) = 0 がガロア群 𝐺(𝐿/𝑄) として 𝐷10をもてば、 𝑓(𝑥) は、𝑄(𝛼) 上で定数倍を 

除いて、𝑓(𝑥) = (𝑥 − 𝛼)(𝛼を含む 𝑥 についての 2次式)(𝛼を含む 𝑥 についての 2次式) 



    と分解され、𝑓(𝑥) をある素数 𝑝 の 𝑚𝑜𝑑  分解をすれば、(1次)(2次)(2次)の分解が得ら 

れる。また、𝑓(𝑥) = 0 がガロア群 𝐺(𝐿/𝑄) として 𝐶5をもてば、 𝑓(𝑥) は、𝑄(𝛼) 上で 

定数倍を除いて、𝑓(𝑥) = (𝑥 − 𝛼) (𝛼を含む 𝑥 についての 1次式) (𝛼を含む 𝑥 についての 1次式) 

                                                             × (𝛼を含む 𝑥 についての 1次式) (𝛼を含む 𝑥 についての 1次式) 

    と分解され、𝑓(𝑥) をある素数 𝑝 の 𝑚𝑜𝑑  分解をすれば、(1次)(1次)(1次)(1次)(1次)の 

分解が得られる。 

 

    

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

この方法によるガロア群の判定は、𝑚𝑜𝑑  ( 𝑝) 分解の試行が有限回しか行えないから 

少し無理があるかもしれないが、二、三十回行えば、ほぼ確定できるであろう(?)。  

５次方程式のガロア群（その 2） 

素数 𝑝 の 𝑚𝑜𝑑  分解をフルに使って分類すると以下のようになる。 

  ただし、.各場合において、(1 次)( 1 次)( 1 次)( 1 次)( 1 次)の分解も 

得られるはずだが、これは恒等置換が含まれることを意味 

するだけなので省く。 

① ５次……既約 

(1 次)(4 次) 

(2 次)(3 次) 

(1 次)(1 次)(3 次) 

(1 次)(2 次)(2 次) 

(1 次)(1 次) (1 次) (2 次) 

         これらが得られるとき  ⟹ 𝐺 ≅ 𝑆5   

*実質、(2 次)(3 次)が得られた時点で 𝐺 ≅ 𝑆5 

② ５次……既約 

(1 次)(1 次)(3 次) 

(1 次)(2 次)(2 次) 

         これらが得られるとき  ⟹ 𝐺 ≅ 𝐴5   

③ ５次……既約 

(1 次)(4 次) 

(1 次)(2 次)(2 次) 

         これらが得られるとき  ⟹ 𝐺 ≅ 𝐹20  

④ ５次……既約 

(1 次)(2 次)(2 次) 

         これらが得られるとき  ⟹ 𝐺 ≅ 𝐷10  

⑤ ５次……既約            ⟹ 𝐺 ≅ 𝐶5    

 



  

((参考例)) 

① 𝑓(𝑥) = 𝑥5 − 4𝑥 + 2 = 0  のガロア群 𝐺 ≅ 𝑆5 

       𝑓(𝑥) ≡ 𝑥5 + 2𝑥 + 2         既約                                        (𝑚𝑜𝑑  3) 

                  𝑓(𝑥) ≡ (𝑥 + 1)(𝑥2 + 2𝑥 + 3)(𝑥2 + 2𝑥 + 4)             (𝑚𝑜𝑑  5) 

                  𝑓(𝑥) ≡ (𝑥2 + 4𝑥 + 6)(𝑥3 + 3𝑥2 + 3𝑥 + 5)               (𝑚𝑜𝑑  7) 

                  𝑓(𝑥) ≡ (𝑥 + 8)(𝑥 + 11)(𝑥3 + 7𝑥2 + 8)                      (𝑚𝑜𝑑  13) 

                 𝑓(𝑥) ≡ (𝑥 + 7)(𝑥4 + 12𝑥3 + 11𝑥2 + 18𝑥 + 3)                           (𝑚𝑜𝑑  19) 

                 𝑓(𝑥) ≡ (𝑥 + 91)(𝑥 + 204)(𝑥 + 226)(𝑥2 + 250𝑥 + 139)          (𝑚𝑜𝑑  257) 

                 𝑓(𝑥) ≡ (𝑥 + 551)(𝑥 + 553)(𝑥 + 587)(𝑥 + 683)(𝑥 + 702)       (𝑚𝑜𝑑  769) 

 

② 𝑓(𝑥) = 𝑥5 + 20𝑥 + 16 = 0  のガロア群 𝐺 ≅ 𝐴5 

       𝑓(𝑥) ≡ 𝑥5 + 2𝑥 + 1         既約                                                          (𝑚𝑜𝑑  3) 

                  𝑓(𝑥) ≡ (𝑥 + 2)(𝑥 + 3)(𝑥3 + 2𝑥2 + 5𝑥 + 5)                                (𝑚𝑜𝑑  7) 

                  𝑓(𝑥) ≡ (𝑥 + 17)(𝑥2 + 12𝑥 + 14)(𝑥2 + 17𝑥 + 2)                       (𝑚𝑜𝑑  23) 

                 𝑓(𝑥) ≡ (𝑥 + 304)(𝑥 + 397)(𝑥 + 511)(𝑥 + 648)(𝑥 + 801)       (𝑚𝑜𝑑  887) 

 

③ 𝑓(𝑥) = 𝑥5 + 15𝑥 − 12 = 0  のガロア群 𝐺 ≅ 𝐹20 

                  𝑓(𝑥) ≡ (𝑥 + 1)(𝑥4 + 6𝑥3 + 𝑥2 + 6𝑥 + 2)                     (𝑚𝑜𝑑  7) 

                  𝑓(𝑥) ≡ (𝑥 + 5)(𝑥2 + 8𝑥 + 9)(𝑥2 + 9𝑥 + 10)              (𝑚𝑜𝑑  11) 

                  𝑓(𝑥) ≡ 𝑥5 + 15𝑥 + 7         既約                                         (𝑚𝑜𝑑  19) 

               𝑓(𝑥) ≡ (𝑥 + 87)(𝑥 + 88)(𝑥 + 203)(𝑥 + 220)(𝑥 + 245)               (𝑚𝑜𝑑  281) 

 

④ 𝑓(𝑥) = 𝑥5 + 20𝑥 − 32 = 0  のガロア群 𝐺 ≅ 𝐷10   

                    𝑓(𝑥) ≡ 𝑥5 + 2𝑥 + 1         既約                                         (𝑚𝑜𝑑  3) 

                    𝑓(𝑥) ≡ (𝑥 + 10)(𝑥2 + 5𝑥 + 3)(𝑥2 + 7𝑥 + 7)             (𝑚𝑜𝑑  11) 

                    𝑓(𝑥) ≡ (𝑥 + 65)(𝑥 + 131)(𝑥 + 135)(𝑥 + 229)(𝑥 + 247)               (𝑚𝑜𝑑  269) 

 

⑤ 𝑓(𝑥) = 𝑥5 + 𝑥4 − 12𝑥3 − 21𝑥2 + 𝑥 + 5 = 0 のガロア群 𝐺 ≅ 𝐶5   

𝑓(𝑥) ≡ 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1                        (𝑚𝑜𝑑  2)  

 𝑓(𝑥) ≡ 𝑥5  + 𝑥4 + 𝑥 + 2                                 (𝑚𝑜𝑑  3)  

𝑓(𝑥) ≡   (𝑥 + 10)(𝑥 + 18)(𝑥 + 20)(𝑥 + 31)(𝑥 + 33)                 (𝑚𝑜𝑑  37)   

 

 

 

 



 

  【参考までに】 

３次方程式と４次方程式のガロア群の判定を素数 𝑝 の 𝑚𝑜𝑑  分解を 

フルに使って分類すると以下のようになる 

  （ただし、(1 次)( 1 次)…( 1 次)の分解は省く） 

 

   ３次方程式のガロア群 𝐺 

素数 𝑝 の 𝑚𝑜𝑑  分解で 

① ３次… 既約  と 

(１次)(２次)  が得られる ➡    𝐺 ≅ 𝑆3 

② ３次… 既約 が得られる ➡    𝐺 ≅ 𝐴3        

 

 

      4 次方程式のガロア群 𝐺 

素数 𝑝 の 𝑚𝑜𝑑  分解で 

① 4 次… 既約     と 

(１次)(１次)(２次)  と 

(１次)(3 次)     と 

(2 次)(２次)     が得られる  ➡    𝐺 ≅ 𝑆4   

② (１次)(3 次)    と 

(2 次)(２次)    が得られる  ➡    𝐺 ≅ 𝐴4         

③ 4 次… 既約     と 

(１次)(１次)(２次)  と 

(2 次)(２次)     が得られる  ➡    𝐺 ≅ 𝐷4    

（ここで、𝐷4は位数 8 の群で、正 4 角形をそれ自身に移す回転変換や鏡映変換） 

④ (2 次)(２次)  だけが得られる  ➡    𝐺 ≅ 𝑉  

（ここで、𝑉は位数 4 の群で、長方形をそれ自身に移す対称変換） 

⑤ 4 次… 既約     と 

(2 次)(２次)     が得られる  ➡    𝐺 ≅ 𝐶4    

(ここで、𝐶4は位数 4 の巡回群) 
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